EUCLIDEAN GEOMETRY

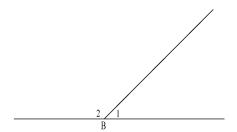
EUCLIDEAN GEOMETRY – GRADE 10

REVISION

LINES AND ANGLES

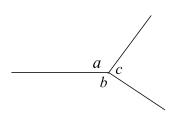
Adjacent supplementary angles

In the diagram, $\hat{B}_1 + \hat{B}_2 = 180^{\circ}$



Angles round a point

In the diagram, $a+b+c=360^{\circ}$

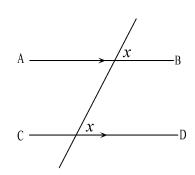


Vertically opposite angles

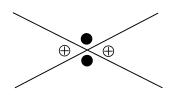
Vertically opposite angles are equal.

Corresponding angles

If AB||CD, then the corresponding

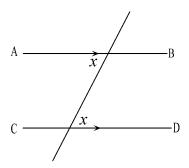


angles are equal.



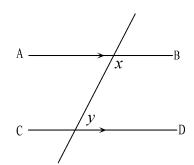
Alternate angles

If AB||CD, then the alternate angles are equal.



Co-interior angles

If AB||CD, then the co-interior angles add up to 180° , i.e. $x + y = 180^{\circ}$



TRIANGLES

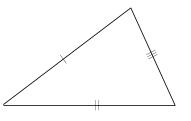
There are four kinds of triangles:

Scalene Triangle

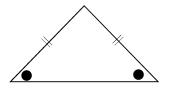
No sides are equal in length

Isosceles Triangle

Two sides are equal



angles are equal



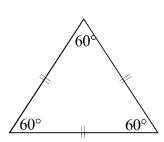
Triangle

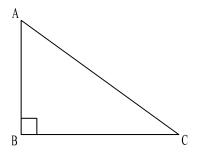
Base

Equilateral Right-angled triangle

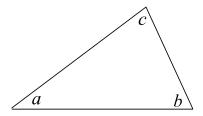
All three sides are equal All three interiexor angles are equal

One interior angle is 90°





Sum of the angles of a triangle



$$a + b + c = 180^{\circ}$$

a + *b* + *c* + 100

The Theorem of Pythagoras

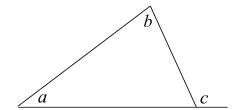
$$AC^2 = AB^2 + BC^2$$

or

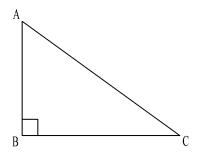
$$AB^2 = AC^2 - BC^2$$

or

$$BC^2 = AC^2 - AB^2$$



$$c = a + b$$



Congruency of triangles (four conditions)

Condition 1

Two triangles are congruent if three sides of one triangle are equal in length to the three sides of the other triangle.

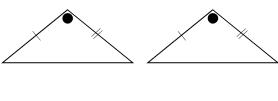


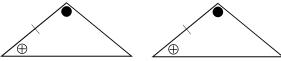
Condition 2

Two triangles are congruent if two sides and the included angle are equal to two sides and the included angle of the other triangle.

Condition 3

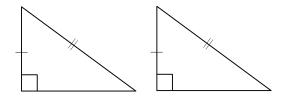
Two triangles are congruent if two angles and one side are equal to two angles and one side of the other triangle.





Condition 4

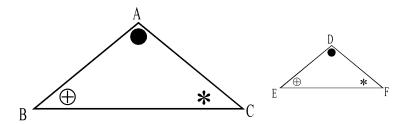
Two right-angled triangles are congruent if the hypotenuse and a side of the one triangle is equal to the hypotenuse and a side of the other triangle.



Similar Triangles

If two triangles are similar (equiangular), then their corresponding sides are in the same proportion.

If
$$\triangle ABC \parallel \triangle DEF$$
, then $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$



SOLVING GEOMETRIC RIDERS

STEP 1

• Analyse the diagram given.

STEP 2

- Analyse the diagram by paying attention to **key words** given.
- Look for information in the diagram which can be helpful and useful
- Use colours to mark off equal angles / sides
- Look for **implied information**.

STEP 3

- Brainstorm and develop a rough proof.
- Link the information you have acquired

STEP 4

• Rewrite a formal proof

EXAMPLES OF KEY WORDS

Parallel lines given

- Triangle information
 How to prove that lines are parallel?
 Centre of circle given
 Diameter given

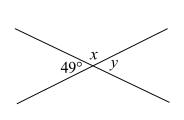
- Angles on the same segment Chords
- Cyclic quads Tangents etc.

EXERCISE 1 (Revision of Grade 8 and 9)

1. Calculate the size of the angles marked with small letters:

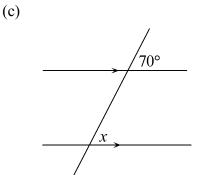
(a)

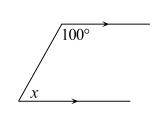
(b)



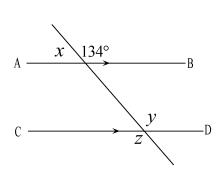
(d)

6





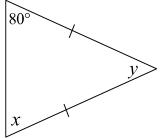
70%

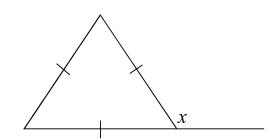


(g)

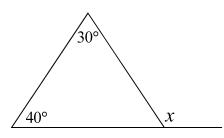
(i)

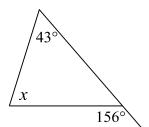
(h)



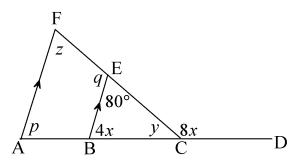


(j)

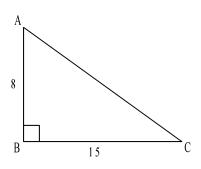


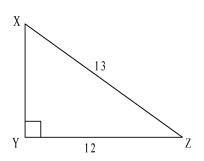


In ΔACF , $AF\parallel\!BE.$ Calculate, with reasons, the sizes of all angles 2. indicated by a small letter.

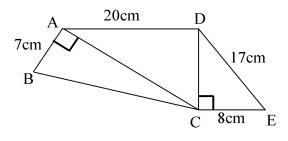


- Calculate AC. 3. (a)
- Calculate XY. (b)





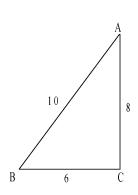
(c) Calculate the length of BC.

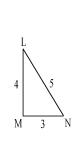


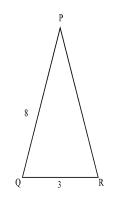
4. Are the following pairs of triangles similar? Give a reason for your answer.

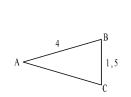
(a)

(b)

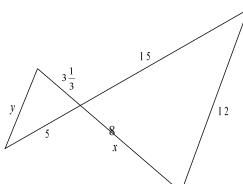




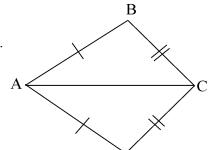




5. The two triangles below are similar. Calculate the value of x and y.

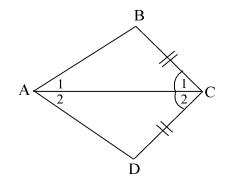


6. ABCD is a kite in which AB = AD and BC = CD. Prove that:



D

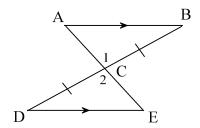
- (a) $\Delta ABC \equiv \Delta ADC$
- (b) Why is $\hat{B} = \hat{C}$?
- 7. ABCD is a kite in which $\hat{C}_1 = \hat{C}_2$ and BC = CD. Prove that:



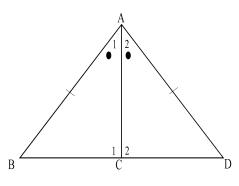
- (a) $\triangle ABC \equiv \triangle ADC$
- (b) Why is $\hat{A}_1 = \hat{A}_2$?

8. AB \parallel DE and DC = CB . Prove that:

(b) AB = DE



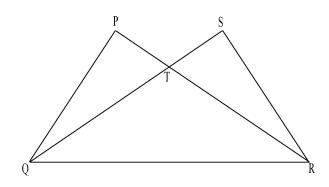
9. Prove that using two conditions of



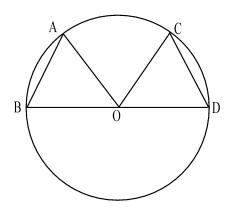
 $\Delta ABC \equiv \Delta ADC$ different congruency.

10. In the figure below, sides PR and QS of triangles PQR and SQR intersect at T. PQ = SR and $\hat{P} = \hat{S} = 90^{\circ}$.

Prove that $\Delta PQR \equiv \Delta SQR$.



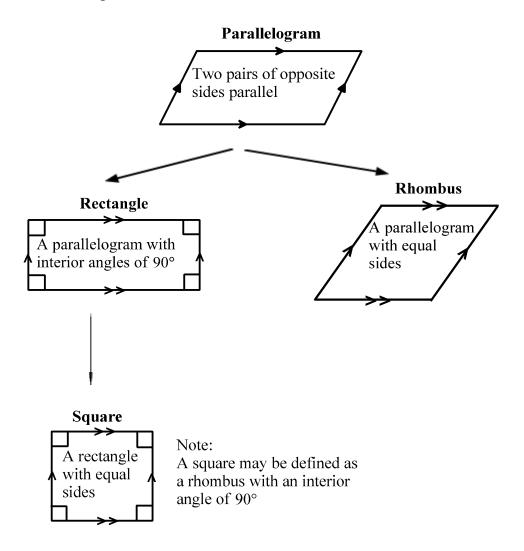
11. Prove that $\triangle AOB = \triangle COD$ if O is the centre of the circle and AB = CD.

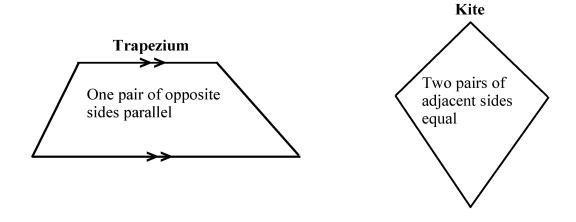


QUADRILATERALS

A **polygon** is a two-dimensional figure with three or more straight sides. A **quadrilateral** is a polygon with four straight sides.

Definitions of quadrilaterals



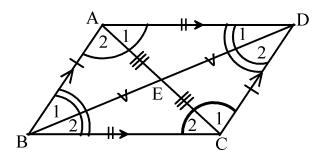


PROPERTIES OF QUADRILATERALS

(It is advisable to first do the investigation and mind map on quadrilaterals before discussing the properties which follow – see Teacher's Guide)

Parallelogram

If ABCD is a parallelogram, you may assume the following properties:

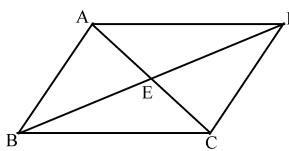


AD||BC; AB||DC
AD = BC; AB = DC
AE = EC; BE = ED

$$\hat{D}_1 = \hat{B}_2; \hat{D}_2 = \hat{B}_1; \hat{C}_1 = \hat{A}_2; \hat{C}_2 = \hat{A}_1$$

 $\hat{A} = \hat{C}; \hat{B} = \hat{D}$

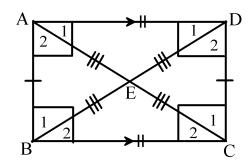
In order to prove that a quadrilateral is a parallelogram, you will need to prove at least one of the following:



$$\begin{array}{ll} O & AD || BC \text{ and } AB || DC & Opp \text{ sides } || \\ & AD = BC \text{ and } AB = DC & Opp \text{ sides } = \\ & AE = EC \text{ and } BE = ED & Diagonals \text{ bisect} \\ & \hat{A} = \hat{C} \text{ and } \hat{B} = \hat{D} & Opp \text{ angles } = \\ & AB || DC \text{ and } AB = DC \\ & AD || BC \text{ and } AD = BC & \end{array}$$

Rectangle

If ABCD is a rectangle, you may assume the following properties:



AD||BC; AB||DC
AD = BC; AB = DC
AE = EC = BE = ED

$$\hat{D}_1 = \hat{B}_2; \hat{D}_2 = \hat{B}_1; \hat{C}_1 = \hat{A}_2; \hat{C}_2 = \hat{A}_1$$

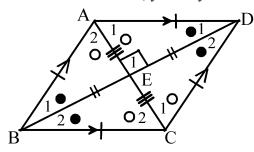
 $\hat{A} = \hat{C} = \hat{B} = \hat{D} = 90^{\circ}$

In order to prove that a quadrilateral is a rectangle, you will need to prove one of the following:

12

- (a) The quadrilateral is a parallelogram with at least one interior angle equal to 90°
- (b) The diagonals of the quadrilateral are equal in length and bisect each other. **Rhombus**

If ABCD is a rhombus, you may assume the following properties:



AD||BC; AB||DC
AD = BC = AB = DC
AE = EC; BE = ED

$$\hat{D}_1 = \hat{D}_2 = \hat{B}_1 = \hat{B}_2$$

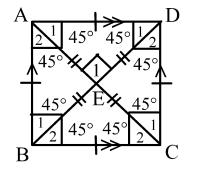
 $\hat{A}_1 = \hat{A}_2 = \hat{C}_1 = \hat{C}_2$; $\hat{A} = \hat{C}$; $\hat{B} = \hat{D}$
 $\hat{E}_1 = 90^\circ$; AC \perp BD

In order to prove that a quadrilateral is a rhombus, you will need to prove one of the following:

- (a) The quadrilateral is a parallelogram with a pair of adjacent sides equal
- (b) The quadrilateral is a parallelogram in which the diagonals bisect at right angles.

Square

If ABCD is a square, you may assume the following properties:



AD||BC; AB||DC
AD = BC = AB = DC
AE = EC = BE = ED

$$\hat{D}_1 = \hat{D}_2 = \hat{B}_1 = \hat{B}_2 = \hat{A}_1 = \hat{A}_2 = \hat{C}_1 = \hat{C}_2 = 45^\circ$$

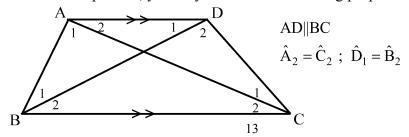
 $\hat{A} = \hat{C} = \hat{B} = \hat{D} = 90^\circ$
 $\hat{E}_1 = 90^\circ$; AC \perp BD

In order to prove that a quadrilateral is a square, you will need to prove one of the following:

- (a) The quadrilateral is a parallelogram with an interior right angle and a pair of adjacent sides equal.
- (b) The quadrilateral is a rhombus with an interior right angle
- (c) The quadrilateral is a rhombus with equal diagonals.

Trapezium

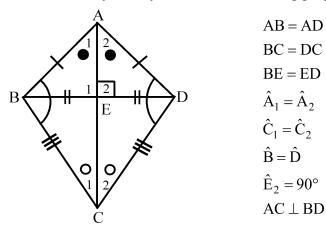
If ABCD is a trapezium, you may assume the following properties:



In order to prove that a quadrilateral is a trapezium, you will need to prove that $AD\|BC$.

<u>Kite</u>

If ABCD is a kite, you may assume the following properties:



In order to prove that a quadrilateral is a kite, you will need to prove that the pairs of adjacent sides are equal in length.

GRADE10 ATP

THEOREM 1

The opposite sides and angles of a parallelogram are equal.

Required to prove:
$$AB = CD$$
; $AD = BC$; $\hat{A} = \hat{C}$; $\hat{B} = \hat{D}$

Proof

Draw parallelogram ABCD and join the diagonals AC and BD.

In $\triangle ABC$ and $\triangle CDA$:

- (a) $\hat{A}_2 = \hat{C}_1$ alt angles equal
- (b) $\hat{A}_1 = \hat{C}_2$ alt angles equal
- (c) AC = AC common side

$$\therefore \triangle ABC \equiv \triangle CDA$$
 SAA

$$\therefore AB = CD$$
 and $AD = BC$

Also
$$\hat{B} = \hat{D}$$

Similarly, it can be proved that $\triangle ABD \equiv \triangle CDB$

$$\therefore \hat{A} = \hat{D}$$

CONVERSE OF THEOREM 1

- (a) If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram.
- (b) If the opposite angles of a quadrilateral are equal, then the quadrilateral is a parallelogram.

EXAMPLE 1

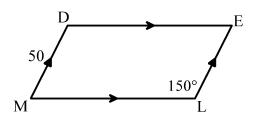
DELM is a parallelogram with DM=50 and $\hat{L}=150^{\circ}$. Calculate the length of EL and the sizes of \hat{D}, \hat{E} and \hat{M} .

Solution

EL = 50 Opp sides of parm
$$\hat{D} = 150^{\circ}$$
 Opp angles of parm

$$\hat{E} = 30^{\circ}$$
 Co-interior angles

$$\hat{M} = 30^{\circ}$$
 Opp angles of parm



EXAMPLE 2

DELM is a parallelogram. Calculate the value of x and hence the sizes of the interior angles.

Solution

$$2x + x = 180^{\circ}$$
 Co-interior angles

$$\therefore 3x = 180^{\circ}$$

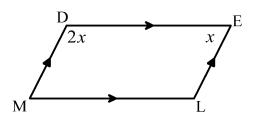
$$\therefore x = 60^{\circ}$$

$$\therefore \hat{E} = 60^{\circ}$$

$$\therefore \hat{M} = 60^{\circ}$$
 Opp angles of parm

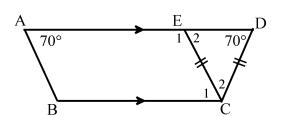
$$\hat{D} = 2(60^{\circ}) = 120^{\circ}$$

$$\hat{L} = 120^{\circ}$$
 Opp angles of parm



EXAMPLE 3

In trapezium ABCD, AD||BC with $\hat{A} = \hat{D} = 70^{\circ}$ and EC = DC. Prove that ABCE is a parallelogram.



Solution

$$\hat{E}_2 = 70^{\circ}$$
 Angles opp equal sides

$$\hat{C}_1 = 70^{\circ}$$
 Alt angles equal

$$\therefore \hat{\mathbf{A}} = \hat{\mathbf{C}}_1$$

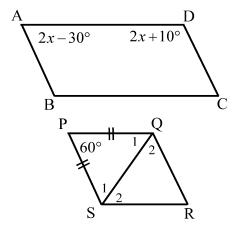
$$\hat{E}_1 = 110^{\circ}$$
 Adjacent suppl angles

$$\hat{B} = 110^{\circ}$$
 Co-interior angles

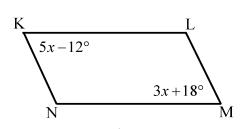
$$:: \hat{\mathbf{E}}_1 = \hat{\mathbf{B}}$$

EXERCISE 2

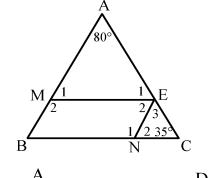
- 1. Determine the sizes of the interior angles of parallelogram ABCD.
- 2. PQRS is a parallelogramwith $\hat{P} = 60^{\circ}$ and PQ = PS. Calculate the sizes of \hat{R} , \hat{S}_1 , \hat{Q}_1 , \hat{Q}_2 and \hat{S}_2 .



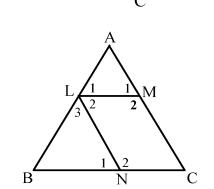
- 3. KLMN is a parallelogram. Calculate the size of the interior angles.
- 4. In $\triangle ABC$, $\hat{A} = 80^{\circ}$ and $\hat{C} = 35^{\circ}$. Calculate the interior angles of parallelogram MENB.



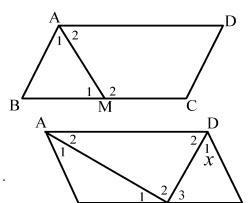
5. In parallelogram ABCD, AB = AD and $\hat{C} = 110^{\circ}$. Calculate the size of all interior angles.



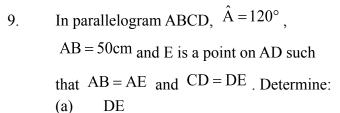
6. ΔABC is an equilateral triangle. Determine the interior angles of parallelogram LMCN.

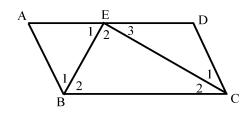


7. ABCD is a parallelogram. AM bisects $\hat{A} \cdot AB = AM \cdot \hat{C} = 120^{\circ} \cdot \text{Calculate the sizes of all interior angles}.$



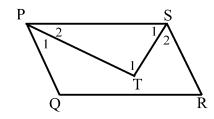
8. In parallelogram ABCD, AB = BE = DE $\hat{A}_1 = 28^{\circ} \text{ Calculate the size } \hat{D}_1 \text{ if } \hat{D}_1 = x$





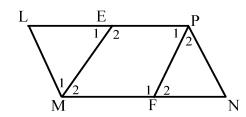
- (b) the perimeter of ABCD.
- 10. In parallelogram PQRS, $\hat{Q} = 114^{\circ}$, PT bisects \hat{P} and TS bisects \hat{S} .

 Prove that $PT \perp ST$.

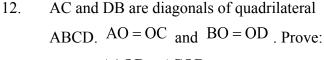


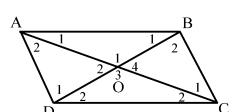
11. In quadrilateral LMNP, $\hat{E}_1 = 62^{\circ}$, $\hat{P}_1 = 68^{\circ}$, $\hat{P}_2 = 56^{\circ}$, FP = FN and LE = LM.

Prove that:



- (a) LP||MN
- (b) LMNP is a parallelogram.





- (a) $\Delta AOD \equiv \Delta COB$
- (b) $\Delta AOB \equiv \Delta COD$
- (c) ABCD is a parallelogram.

THEOREM 2

The diagonals of a parallelogram bisect each other.

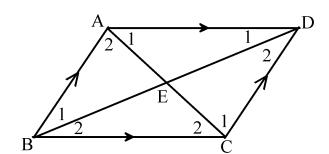
Required to prove: AE = EC and BE = ED

Proof

Draw parallelogram ABCD and join the diagonals AC and BD.

19

In $\triangle ABE$ and $\triangle CDE$:



(a)
$$\hat{A}_2 = \hat{C}_1$$
 alt angles equal

(b)
$$\hat{B}_1 = \hat{D}_2$$
 alt angles equal

(c)
$$AB = DC$$
 opp sides of parm

$$\therefore \triangle ABE \equiv \triangle CDE$$
 SAA

$$\therefore BE = ED$$
 and $AE = EC$

CONVERSE OF THEOREM 2

If the diagonals of quadrilateral bisect each other, then the quadrilateral is a parallelogram.

EXAMPLE 4

Diagonals AC and BD of parallelogram ABCD intersect at M. AP = QC and AC = 600 mm, AB = 500 mm and AP = 100 mm. Prove that PBQD is a parallelogram.

Solution

$$AM = MC$$
 diagonals of a parm

But
$$AC = 600 \text{mm}$$
 given

$$\therefore$$
 AM = MC = 300mm

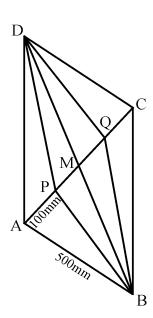
$$AP = QC = 100mm$$
 given

$$\therefore$$
 PM = MQ = 200mm

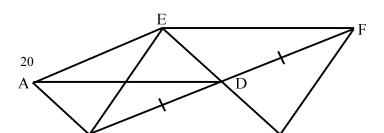
Also
$$BM = MD$$
 diagonals of parm

$$\therefore PM = MQ$$
 and $BM = MD$

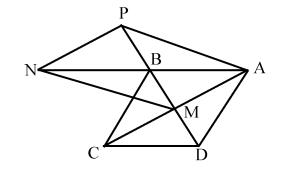
: PBQD is a parallelogram since diagonals bisect each other.



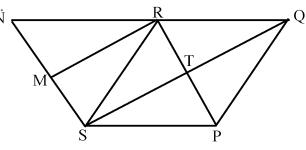
EXERCISE 3



- 1. Parallelograms ABCD and ABDE are given with DF = DB. Prove that BCFE is a parallelogram.
- ABCD is a parallelogram. DM = BP2. and $DC = BN \cdot Prove$:
 - APNM is a parallelogram. (a)
 - PN = MC(b)



- PQRS is a parallelogram. PR and QS 3. intersect at T. QT = RM and SM = PTProve that:
 - RTSM is a parallelogram. (a)
 - QR = RN(b)



THEOREM 3

If two opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram.

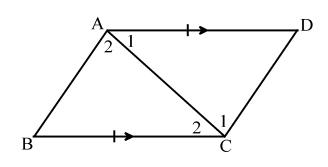
Required to prove: ABCD is a parallelogram

Proof:

In $\triangle ABC$ and $\triangle CDA$:

- $\hat{A}_1 = \hat{C}_2$ (a)
- alt angles equal
- AC = AC(b) commom side
- AD = BC(c) given
- $\therefore \Delta ABC \equiv \Delta CDA$ SAS

 $\therefore AB = DC$



and AD = BC

 \therefore ABCD is a parallelogram since the opposite sides are equal.

EXAMPLE 5

ABCD is a parallelogram with ED = BF. Prove that BEFD is a parallelogram.

В

Solution

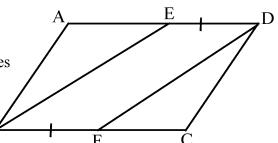
AD||BC opp sides parm parallel

∴ ED||BF AED and BFC are straight lines

and ED = BF given

∴ BEFD is a parm one pair of opp sides equal

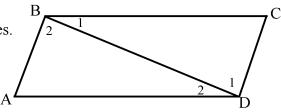
and parallel.



EXERCISE 4

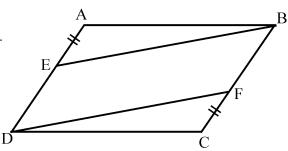
1. $\triangle ABD$ and $\triangle BCD$ are two isosceles triangles. $\hat{C} = 75^{\circ}$ 1. $\triangle \hat{D}B = 30^{\circ}$ B. (4.4 ABCD)

 $\hat{C} = 75^{\circ}$ and $\hat{ADB} = 30^{\circ}$. Prove that ABCD is a parallelogram.



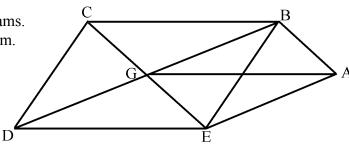
2. ABCD is a parallelogram with AE = FC.

Prove that BEDF is a parallelogram.



3. BCDE and ABCG are parallelograms.

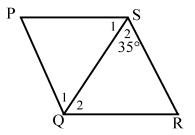
Prove that ABGE is a parallelogram.



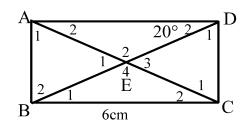
The next exercise involves the properties of rectangles, rhombuses and squares. Familiarise yourself with the properties of these quadrilaterals before attempting the exercises.

EXERCISE 5 (Rectangles, rhombuses, squares, trapeziums and kites)

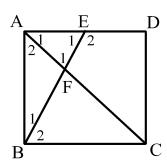
1. PQRS is a rhombus with $\hat{S}_2 = 35^{\circ}$. Calculate the size of all other interior angles.



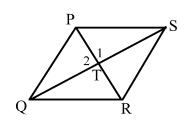
2. Diagonals AC and BD intersect at E. ABCD is a rectangle with AC = 10cm and BC = 6cm. $\hat{D}_2 = 20^\circ$. Calculate the following: \hat{A}_1 ; \hat{A}_2 ; \hat{B}_1 ; \hat{B}_2 ; \hat{C}_1 ; \hat{C}_2 ; \hat{D}_1 , AD, AE and AB.



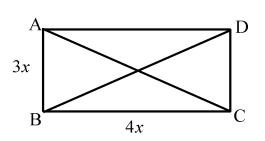
3. ABCD is a square. $A\hat{E}B = 55^{\circ}$. Calculate \hat{F}_1 .



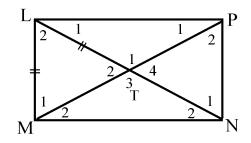
4. In rhombus PQRS, PQ = 26cmand QS = 48cm. Calculate the length of PR.



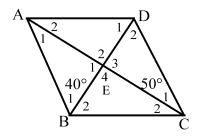
5. In rectangle ABCD, AB = 3x and BC = 4x. Find the length of AC and BD in terms of x.



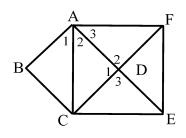
6. The diagonals of parallelogram LMNP intersect at T. LT = LM and $M\hat{T}N = 120^{\circ}$. Prove that LMNP is a rectangle.



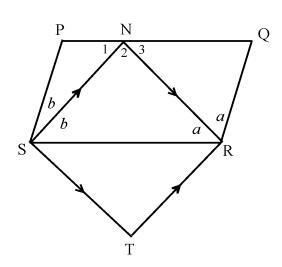
7. ABCD is a parallelogram. $\hat{B}_1 = 40^\circ$ and $\hat{C}_1 = 50^\circ$. Prove that ABCD is a rhombus.



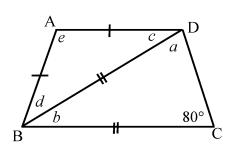
8. ABCD is a square. DE = DA and DF = DC. Prove that ACEF is a square.



9. In parallelogram PQRS, NR bisects \hat{SRQ} and NS bisects \hat{PSR} . SN||RT and NR||ST Prove that STRN is a rectangle.

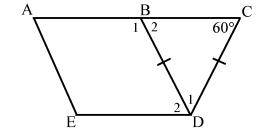


10. ABCD is a trapezium with AD||BC. $AB = AD \quad and \quad BD = BC \quad \hat{C} = 80^{\circ} \ .$ Determine the unknown angles.



11. ABCDE is an isosceles trapezium. BC = CD and $\hat{C} = 60^{\circ}$. Prove that:

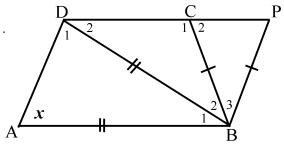
(a) ABDE is a parallelogram.



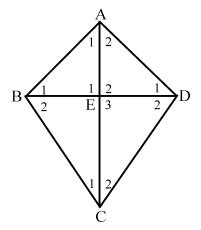
(b) ΔBCD is equilateral.

12. ABCD is an isosceles trapezium with $\hat{A} = x$. BC = BP and AB = DB. Prove that:

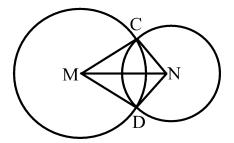
(b) $\Delta ABD \equiv \Delta PDB$



- 13. ABCD is a kite. The diagonals intersect at E. BD = 30cm, AD = 17cm and DC = 25cm. Determine:
 - (a) AE
 - (b) AC
 - (c) \hat{B}_1 if $\hat{A}_1 = 20^\circ$



- 14 Circle centre M intersects circle centre N at C and D. Prove that:
 - (a) MDNC is a kite.
 - (b) $\hat{MCN} = \hat{MDN}$



MORE ON POLYGONS

A polygon is a two-dimensional figure with three or more straight sides. A **regular polygon** is a polygon in which all the sides are equal in length.

- The rule for calculating the sum of the interior angles of a polygon of n sides is given by the formula: $180^{\circ}(n-2)$
- The size of an interior angle of a regular polygon is given by the formula: $180^{\circ}(n-2)$

n

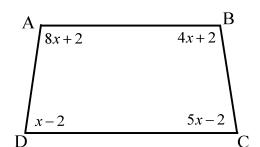
Polygons	Name	Interior angles

3		
sides 60°	Equilateral Triangle (Regular)	The sum of the interior angles: $180^{\circ}(3-2) = 180^{\circ}$ The size of an interior angle: $\frac{180^{\circ}(3-2)}{3} = 60^{\circ}$
A B B C Sides	Square (Regular)	The sum of the interior angles: $180^{\circ}(4-2) = 360^{\circ}$ The size of an interior angle: $\frac{180^{\circ}(4-2)}{4} = 90^{\circ}$
4 sides A O C	Rhombus (Not regular)	The sum of the interior angles: $180^{\circ}(4-2) = 360^{\circ}$. However, the opposite angles are equal but the co-interior angles add up to 180° (not all angles are equal as in other regular polygons).
108° 108° 5 sides	Pentagon (Regular)	The sum of the interior angles: $180^{\circ}(5-2) = 540^{\circ}$. The size of an interior angle: $\frac{180^{\circ}(5-2)}{5} = 108^{\circ}$

6 sides 120° 120° 120° 120° 120° 120°	Hexagon (Regular)	The sum of the interior angles: $180^{\circ}(6-2) = 720^{\circ}$. The size of an interior angle: $\frac{180^{\circ}(6-2)}{6} = 120^{\circ}$
8 sides 135° 135° 135° 135° 135° 135°	Octagon (Regular)	The sum of the interior angles: $180^{\circ}(8-2) = 1080^{\circ}$. The size of an interior angle: $\frac{180^{\circ}(8-2)}{8} = 135^{\circ}$

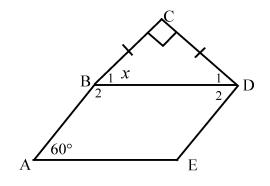
EXERCISE 6

- 1. ABCD is a polygon with four sides.
 - (a) Calculate the value of x.
 - (b) Hence show that ABCD is a trapezium.

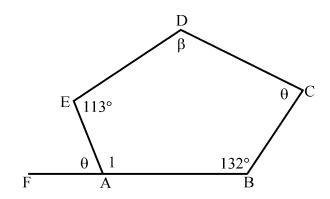


2. ABCD is a pentagon made up of five equal sides and five equal interior angles. Calculate the size of θ , β and α .

3. In polygon ABCDE, $\hat{C} = 90^{\circ}$, BC = CD and ABDE is a parallelogram. Use **TWO** different methods to determine the value of x.

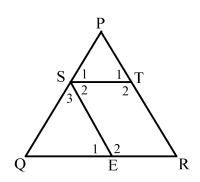


4. Using the information provided on the diagram, determine β .



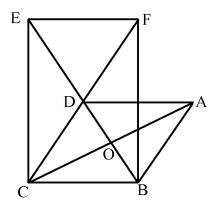
MIXED REVISION EXERCISE

1. In ΔPQR , PQ = PR and STRE is a

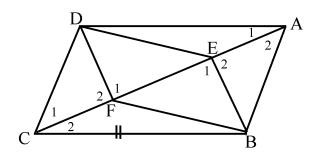


Parallelogram. $\hat{Q} = x$ and $\hat{P} = 2\hat{Q}$. Calculate the sizes of the angles of STRE.

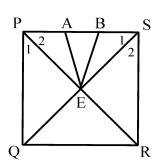
2. ABCD is a parallelogram. FD = DC and DE = 2DO. DO = x. Prove that BCEF is a Parallelogram.



3. ABCD is a parallelogram. BE \perp AC and DF \perp AC . Prove that EBFD is a parallelogram.



4. PQRS is a square. The diagonals intersect at E. PA = BS. Prove that $\triangle AEB$ is an isosceles triangle.

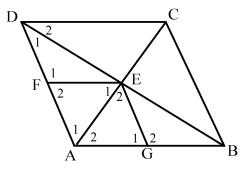


SOME CHALLENGES

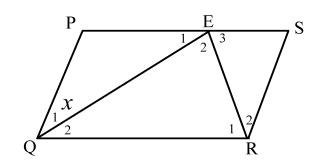
1. FCDE is a parallelogram. CE is produced

to A such that CE = EA and CD = DB. Prove that:

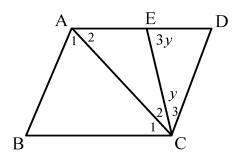
- (a) $\Delta BDF \equiv \Delta FEA$
- (b) BFA is a straight line (Hint: prove that $\hat{F}_1 + \hat{F}_2 + \hat{F}_3 = 180^\circ$)
- 2. ABCD is a rhombus. Diagonals intersect at E. EF = FA and EG = GA. Prove that AGEF is a rhombus.



3. PQRS is a parallelogram. PQ = PE, QE = QR, ER = SR and $P\hat{Q}E = x$. Calculate the size of $\hat{Q}ER$.



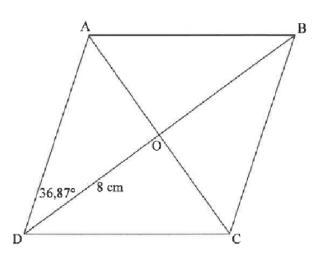
4. ABCD is a rhombus. $\hat{DEC} = 3y$ and $\hat{C} = y$. Prove that EC bisects \hat{ACD} .



DBE,2015 November Paper 2 Grade 10

QUESTION 8

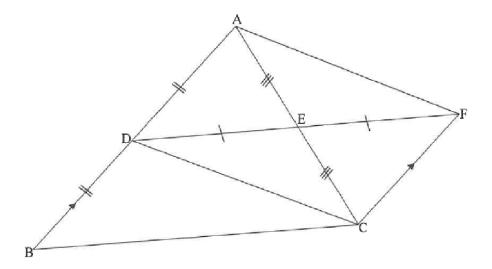
In the diagram, ABCD is a rhombus having diagonals AC and BD intersecting in O. $\hat{ADO} = 36,87^{\circ}$ and $\hat{DO} = 8$ cm.



- 8.1 Write down the sizes of the following angles:
 - 8.1.1 CDO
 - 8.1.2 AÔD
- 8.2 Calculate the length of AO.
- 8.3 If E is a point on AB such that OE | | DA, calculate the length of OE.

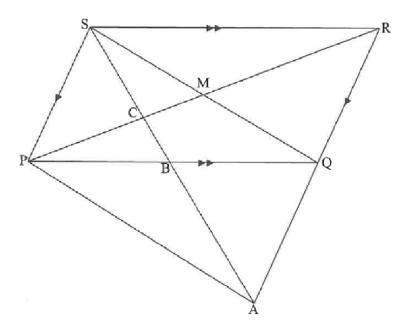
QUESTION 9

In the diagram below, D is the midpoint of side AB of \triangle ABC. E is the midpoint of AC. DE is produced to F such that DE = EF. CF | BA.



- 9.1.1 Write down a reason why $\triangle ADE \equiv \triangle CFE$.
- 9.1.2 Write down a reason why DBCF is a parallelogram.
- 9.1.3 Hence, prove the theorem which states that $DE = \frac{1}{2}BC$.

9.2 In the diagram below, PQRS is a parallelogram having diagonals PR and intersecting in M. B is a point on PQ such that SBA and RQA are straight and SB = BA. SA cuts PR in C and PA is drawn.



- 9.2.1 Prove that SP = QA.
- 9.2.2 Prove that SPAQ is a parallelogram.
- 9.2.3 Prove that AR = 4MB.

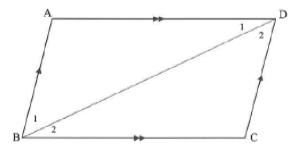
DBE,2016 November Paper 2 Grade 10

QUESTION 8

8.1 Complete the following statement:

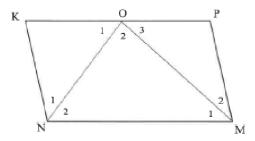
If the opposite angles of a quadrilateral are equal, then the quadrilateral ... (1)

8.2 Use the sketch below to prove that the opposite sides of a parallelogram are equal.



(6)

8.3 In the sketch below, KPMN is a parallelogram. ON bisects KNM and OM bisects NMP.



- 8.3.1 Show that NOM = 90°.
- 8.3.2 Prove that O is the midpoint of KP.

(6) [16]

(3)

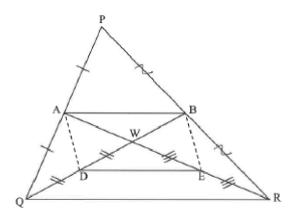
QUESTION 9

9.1 Complete the following statement:

> The line through the midpoint of two sides in a triangle is parallel to and ... the third side.

(1)

In ΔPQR , A and B are the midpoints of sides PQ and PR respectively. AR and BQ intersect at W. D and E are points on WQ and WR respectively such that WD = DQ and WE = ER. 9.2



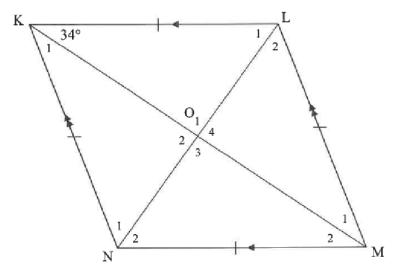
Prove that ADEB is a parallelogram.

(5) **[6]**

DBE,2017 November Paper 2 Grade 10

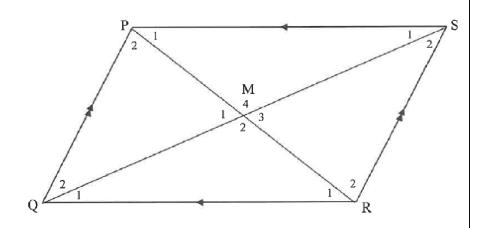
QUESTION 8

8.1 KLMN is a rhombus with diagonals intersecting at O. $L\hat{K}M = 34^{\circ}$.



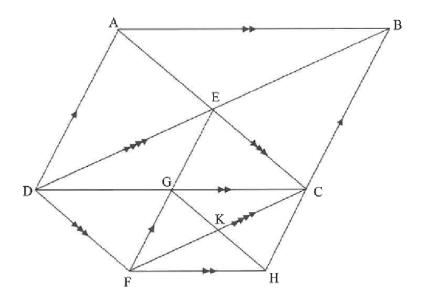
- 8.1.1 Write down the size of \hat{O}_1 .
- 8.1.2 Calculate the size of \hat{L}_1 .
- 8.1.3 Calculate the size of KNM.

8.2 Given parallelogram PQRS with diagonals PR and QS intersecting at M.



Prove that the diagonals bisect each other.

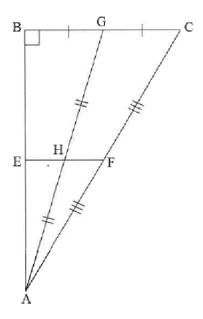
8.3 In the diagram, ABCD is a parallelogram with diagonals intersecting at E. The diagonals of parallelogram DECF intersect at G. The diagonals of parallelogram FGCH intersect at K.



Prove that DB = 4KC.

QUESTION 9

 ΔABC is right-angled at B. F and G are the midpoints of AC and BC respectively. H is the midpoint of AG. E lies on AB such that FHE is a straight line.



- 9.1 Prove that E is the midpoint of AB.
- 9.2 If EH = 3,5 cm and the area of $\Delta AEH = 9.5 \text{cm}^2$, calculate the length of AB.
- 9.3 Hence, calculate the area of ΔABC .